Ophthalmic Optics Formulas

$$s = \frac{y^2}{2r}$$
 Approximate Sagittal Depth

$$P = \frac{2(n-1)s}{v^2}$$
 Lens Clock

$$\frac{n_T - 1}{P_T} = \frac{n_C - 1}{P_C}$$
 Lens Clock Correction

$$A_1O = t \frac{P_2}{P_1 + P_2}$$
 Optical Center Location

$$Sph \ Equiv = Sphere + \frac{Cylinder}{2}$$

$$P_{\theta} = P_{sph} + P_{cyl} \sin^2 \alpha$$
 Power in Oblique Meridian

$$P_A = P_1 + P_2$$
 Approximate Power

$$P_V' = \frac{P_1}{1 - \frac{d}{n}P_1} + P_2$$
 Back Vertex Power

$$P_{CL} = \frac{P_{SPEC}}{1 - dP_{SPEC}}$$
 Spec Power to CL Power

$$x_S = f_S^2 P_V'$$
 Lensometer

$$ET = CT - S_1 + S_2$$
 Lens Thickness

Amp of Accommodation =
$$\frac{1}{\text{far point}} - \frac{1}{\text{near point}}$$

$$segment\ inset = \frac{(distance\ PD - Near\ PD)}{2}$$

Minimum Blank Size = ED + 2 (dec)

Decentration (per eye) = (Frame PD - Patient PD) / 2

$$\Delta = dP$$

Prentice's Rule

 $d_{\alpha} = d \cos \alpha$

Prism Power in Oblique Meridian

Image Jump = (distance of seg OC from seg top (cm))(add power)

Differential Prism

$$I_R = \frac{(n'-n)^2}{(n'+n)^2}(I)$$
 Reflection at lens surface

$$n_{coating} = \sqrt{n_{lens}}$$
 Index of AR Coating

Ideal Optical Thickness = $\lambda/4$ Optical Thickness of AR Coating

Ideal Physical Thickness = $\lambda/(4n_c)$

Physical Thickness of AR Coating

$$T_T = T_1 x T_2 x T_3 \dots$$

 $T_T = T_1 x T_2 x T_3 \dots$ Total (ultimate) Transmission

$$Opacity = \frac{1}{T}$$
 Opacity

Density = -logT Optical Density

$$SM = \left[\frac{1}{1 - \frac{t}{n} P_1} \right] \left[\frac{1}{1 - h P_V'} \right]$$

Spectacle Magnification