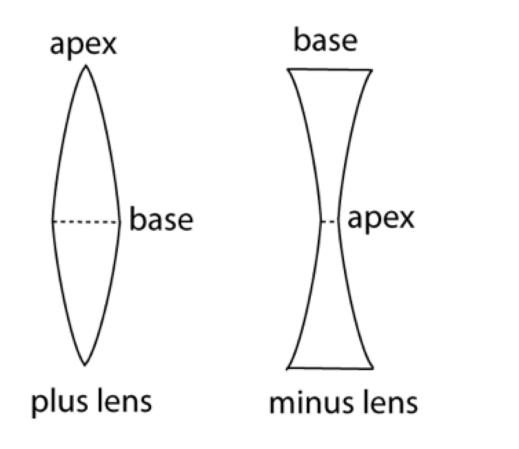
Ophthalmic Optics Review 2019

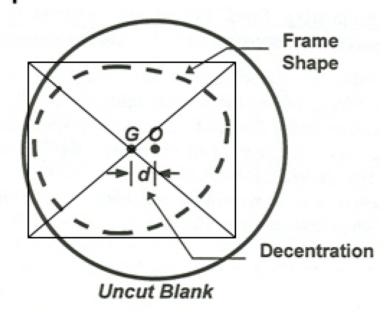
Chris Woodruff

Prism Effects in Periphery of Lens

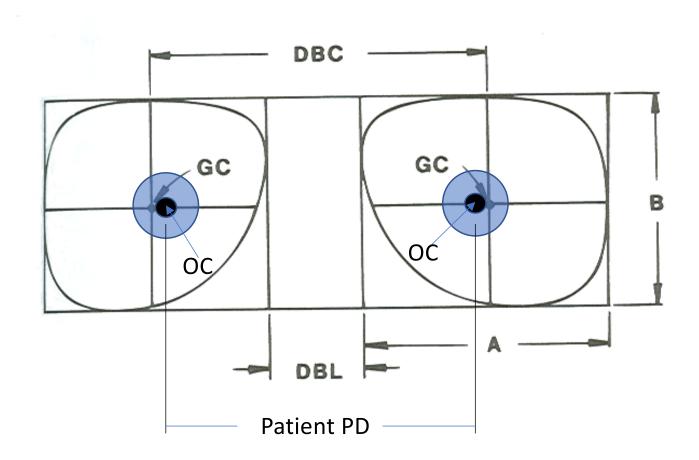

Decentration

Major Reference Points

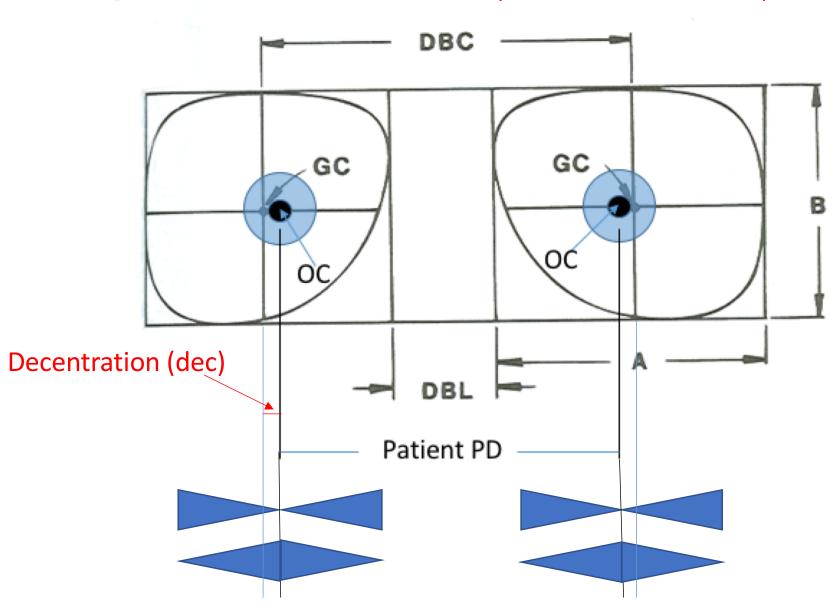
Correction of Vertical Prism Effect


Thickness Difference Across a Prism

Prism Effects in the Periphery of a Lens


Decentration

Lenses are decentered so that the OC of each lens coincides with the centers of the patient's pupils



Major Reference Points

Optical Center & Geometrical Center

dec = (frame PD – Patient PD) / 2

What happens when PD in Rx doesn't match Patient PD?

Minus Rx

PD larger than Patient PD: BI prism from each lens* Creates demand for Divergence (NFV)

PD smaller than Patient PD: BO prism from each lens Creates demand for Convergence (PFV)

Plus Rx

PD larger than Patient PD: BO prism from each lens* Creates demand for Convergence (PFV)

PD smaller then Patient PD: BI prism from each lens Creates demand for Divergence (NFV)

^{*}occurs when reading with distance Rx

What happens to Phoria when PD is not correct?

Minus Rx

PD larger than Patient PD: BI prism from each lens* Phoria appears more ESO than actual

PD smaller than Patient PD: BO prism from each lens Phoria appears more EXO than actual

Plus Rx

PD larger than Patient PD: BO prism from each lens* Phoria appears more EXO than actual

PD smaller then Patient PD: BI prism from each lens Phoria appears more ESO than actual

^{*}occurs when reading with distance Rx

Who benefits from induced prism at near?

Minus Rx

PD larger than Patient PD: BI prism from each lens* Benefits the EXO patient

Plus Rx

PD larger than Patient PD: BO prism from each lens* Benefits the ESO patient

*occurs when reading with distance Rx

Correction of Vertical Prism Effect

With Anisometropic Spectacle Rx:

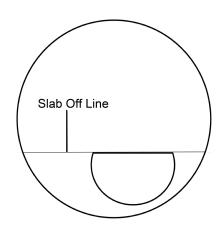
Greatest concern for prismatic effects is for presbyopic patient looking down to use multifocal segment when reading.

Solutions include:

Slab Off Prism
Double Slab Off Prism
Dissimilar Segments
Compensated R Segments
Prism Segments
Multiple Corrections
Contact Lenses
Fresnel Prism
Fresnel Adds

Correction of Vertical Prism Effect

Slab Off Prism


Bi-centric grinding

Plastic lens: applied to back surface

Glass lens: applied to front surface

Results in the removal of base down prism Applied to lens with least plus or most minus power

Slab off line at segment top for segmented bifocal Slab off line slightly above near verification circle on PAL

Correction of Vertical Prism Effect

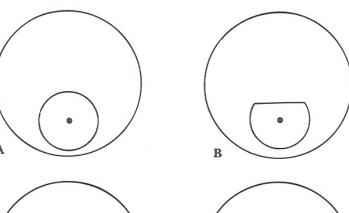
Slab Off Prism

Reverse Slab Off Prism

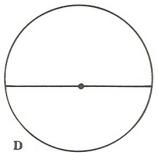
Base down prism is cast into the near portion of the lens Applied to lens with most plus or least minus power

Double Slab Off Prism

Done with high minus lenses Remove base down from each lens Reducing prism effect in downgaze and reducing imbalance


Correction of Vertical Prism Effect

Dissimilar Segments


C

Use two different types of multifocal segment Create prism to neutralize prism in downgaze due to aniso Rx

Seg OC ½ segment diameter below segment top

Seg OC 5mm below segment top

Seg OC at segment top

Correction of Vertical Prism Effect

Compensated R Segments

R (ribbon) Segments are available with Segment OC in positions ranging from 4 to 10mm below segment top.

Maximum prism is limited

Ex: +2.00D can create $(0.6 \times 2.00) = 1.2$ prism diopters

Correction of Vertical Prism Effect

Prism Segments

Prism provided by segment

Rarely Used

Expensive
Thick
Special Order
Limited Availability

Correction of Vertical Prism Effect

Multiple Corrections

Different Distance & Near Corrections

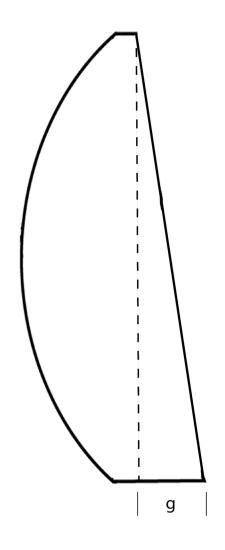
Eliminate need for downgaze with near Rx

Correction of Vertical Prism Effect

Contact Lenses

Contact Lenses usually fit to move with the eye in downgaze so prism not induced in downgaze

Can use multifocal CL, monovision, reading Rx over CLs


Correction of Vertical Prism Effect

Fresnel Prism / Fresnel Add

Used for temporary applications

Reduce contrast and Visual Acuity

Thickness difference across a prism

Thickness attributed to prism:

$$g = \frac{dP}{100(n-1)}$$

Where:

d = lens diameter

P = prism power

n = index of refraction

Aberrations & Lens Design

Aberrations

Chromatic Monochromatic

Principles of Corrected Curve Design

Aberrations

Chromatic Aberration

Characteristic of Lens Material

Monochromatic Aberrations

Characteristic of Lens Design

Spherical Aberration
Coma
Oblique Astigmatism*
Curvature of Field (Image)**
Distortion

*most important

**second most important

Aberrations

Monochromatic Aberrations

Spherical Aberration*
Coma*
Oblique Astigmatism*
Curvature of Field (Image)*
Distortion**

*defocus

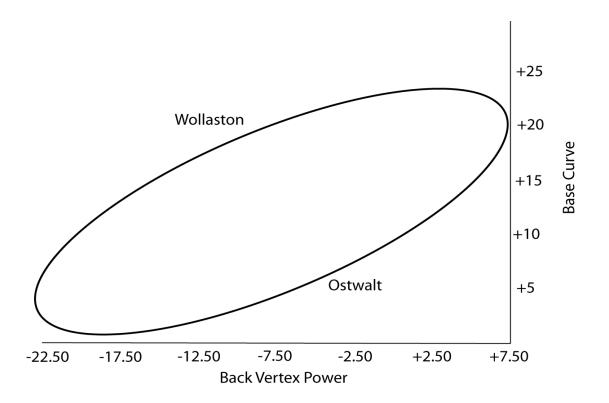
**shape problem

Aberrations

Monochromatic Aberrations

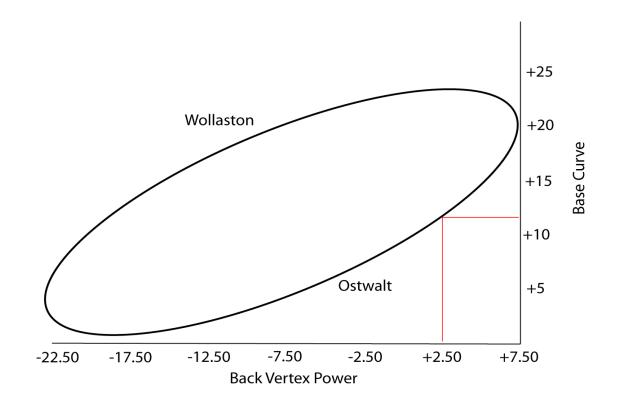
These are usually ignored:

Spherical Aberration Coma Distortion


These are controlled through base curve selection:

Oblique Astigmatism
Curvature of Field (Image)

Principles of Corrected Curve Design


Corrected curve lenses are designed to minimize aberrations through proper base curve selection.

Based on the work of Ostwalt Each lens material has a different curve

Principles of Corrected Curve Design

Base curves are selected to minimize Oblique Astigmatism (and also reduce Curvature of Field):

Anisometropia & Aniseikonia

Concerns with Anisometropia

Spectacle Magnification

Eikonic Lens Design

There are 3 Major Concerns for Anisometropia

- 1. Children developing Amblyopia
- 2. Induced Prism in Lateral / Vertical Gaze
- 3. Aniseikonia

Children Developing Amblyopia

Occurs when one eye is rarely / never used

Examples:

OD: +4.00

OS: Plano

OD requires more accommodation at both distance and near

OD: +2.00

OS: +4.00

OS requires more accommodation at both distance and near

Induced Prism in Lateral / Vertical Gaze

Lateral Prism:

Not a problem in small or moderate amounts

Vertical Prism:

Can be a problem with as little as 1.00D of anisometropia For typical reading position this creates 1 prism diopter imbalance

Vertical Prism most problematic with presbyopia (trying to look down through bifocal segment)

Aniseikonia

Unequal Size and / or Shape of retinal image

Spectacle Magnification

Shape & Power Factors

$$SM = \left(\frac{1}{1 - \frac{t}{n}P_1}\right)\left(\frac{1}{1 - dP_V}\right)$$

Shape

Factor

Power

Factor

Where:

t = lens thickness

n = index of lens

 P_1 = front surface power

 P_V = back vertex power

d = distance from lens to entrance pupil of eye (vertex distance + 3mm)

Spectacle Magnification

Iseikonic Lens Design

Shape Factor

Front Surface Power (P1)

Lens thickness (t)

Increasing P1 or t increases magnification (decreases minification)

Power Factor

Back Vertex Power (Pv)

Distance from lens to entrance pupil

Increasing vertex distance increases magnification (plus lens) or minification (minus lens)

Spectacle Magnification

Iseikonic Lens Design

Parameters we can manipulate to change SM:

Front Surface Power (P1) Lens thickness (t) Vertex Distance

For Most Plus Lens:

For Most Minus Lens:

Decrease Magnification:

Increase Magnification:

Decrease Base Curve (flatten)

Decrease Lens Thickness

Decrease Vertex Distance

Increase Base Curve (steeper)

Increase Lens Thickness

Increase Vertex Distance

Lens Materials & Standards

Characteristics of Lens Materials

Refractive Index Dispersion Specific Gravity

Impact Resistance

Physical Characteristics of Lenses

Lens Materials

Refractive Index & Dispersion

$$n_d = \frac{\textit{velocity of helium light in a vacuum}}{\textit{velocity of helium light in an optical medium}}$$

Dispersion (chromatic aberration) is determined by index higher index: more dispersion measured using Abbe Value: higher is better optical quality

Common Lens Materials:

```
Crown Glass (n = 1.523, Abbe Value = 59)

CR39 (n = 1.49, Abbe Value = 58)

Polycarbonate (n = 1.586, Abbe Value = 29)

Trivex (n = 1.53, n = 45)
```

Physical Characteristics of Lenses

Lens Materials

Specific Gravity

Specific Gravity gives an indication of the weight of a lens higher Specific Gravity: heavier lens

Specific Gravity: ratio of lens material to water

Common Lens Materials:

Crown Glass (specific gravity: 2.54)

CR39 (specific gravity: 1.32)

Polycarbonate (specific gravity: 1.22)

Trivex (specific gravity: 1.11)

Impact Resistance

Impact Resistance varies between lens materials

Glass (must be tempered)

Thermal Tempering
Chemical Tempering
Increase impact resistance by increasing thickness

CR 39 Plastic

Increase impact resistance by increasing thickness

Polycarbonate / Trivex

More impact resistant than CR 39 Can use thinner lenses for dress eyewear Use thicker lenses for safety applications

Impact Resistance

FDA requires ALL prescription spectacle lenses to be impact resistant enough to pass drop ball test

Higher impact resistance standard for safety eyewear then for dress eyewear

Dress eyewear: 5/8 inch steel ball (0.56oz) dropped 50 inches

Safety eyewear: 1 inch steel ball (2.4oz) dropped 50 inches

Impact Resistance

Impact Resistance varies between lens materials

Any coating applied to a lens will DECREASE its impact resistance

Coatings are harder than the lens material and therefore more likely to shatter and cause lens to break

Polycarbonate and Trivex are more impact resistant than Glass and CR 39 because they are softer materials

They absorb impact and become deformed, but not shattered

Properties of Ophthalmic Lenses

Physical Characteristics

Optical Characteristics

Geometry of Lens Surfaces

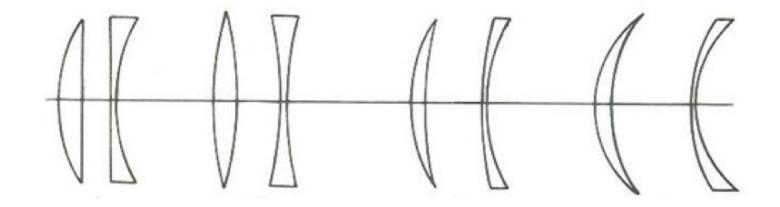
Spherical

Same radius of curvature at every point on the surface

Cylindrical

Two radii, one is infinite
Two surface powers, one is plano

Toric


Two radii, neither is infinite
Two surface powers, neither is plano

Aspheric

Literally: not spherical

Radius of curvature varies from center to periphery of lens

Base Curve (Lens Form)

Base Curve: the least plus power on front surface of spectacle lens

Lens Form: the relationship between front and back surfaces of spectacle lens

Lens Form

Plano / Convex Plano / Concave Biconvex Biconcave

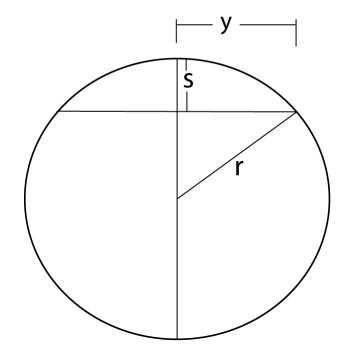
Meniscus

Front Toric (plus cylinder design)
Back Toric (minus cylinder design)
Bitoric

Lens Form: Modern Spectacle Lens Design

Meniscus Design

Plus Spherical Front Surface Minus Spherical/Cylindrical Back Surface


Exceptions: Eikonic Lens Designs

Lens Form Influences:

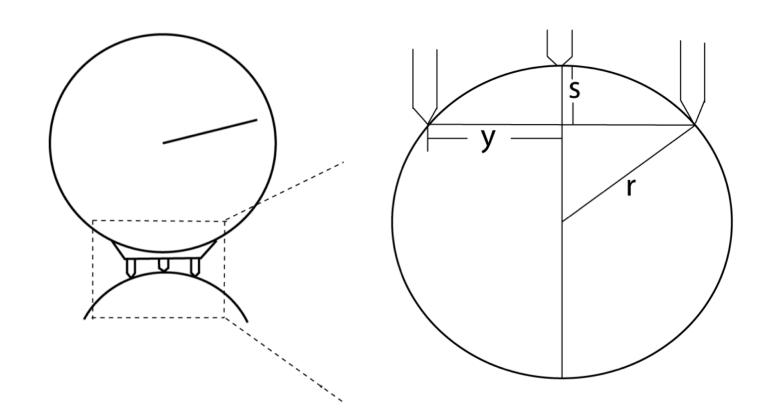
Optical Quality (aberrations)

Thickness (flatter lenses are thinner)

Cosmetic Appearance (reflections and thickness)

Approximate Sag Formula

$$s = \frac{y^2}{2r}$$

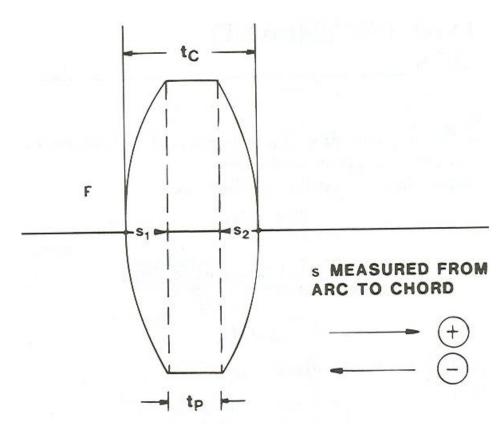

Why do we care about sagittal depth?

- 1. Provides a way to estimate lens power (Lens Clock)
- 2. Influences lens thickness

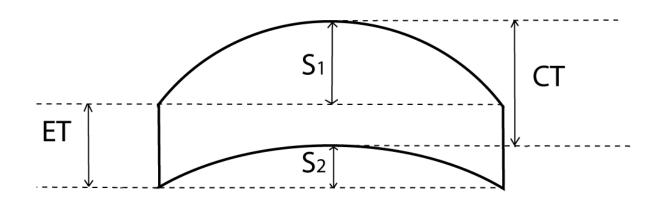
Lens Clock

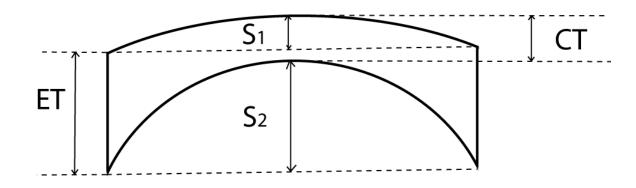
Estimate surface power
Direct measurement of sagittal depth

$$P = \frac{2(n-1)s}{y^2}$$



Lens Thickness


Influences:


Power
Base Curve
Lens Diameter
Index
Minimum Thickness
Center Thickness for Minus
Edge Thickness for Plus

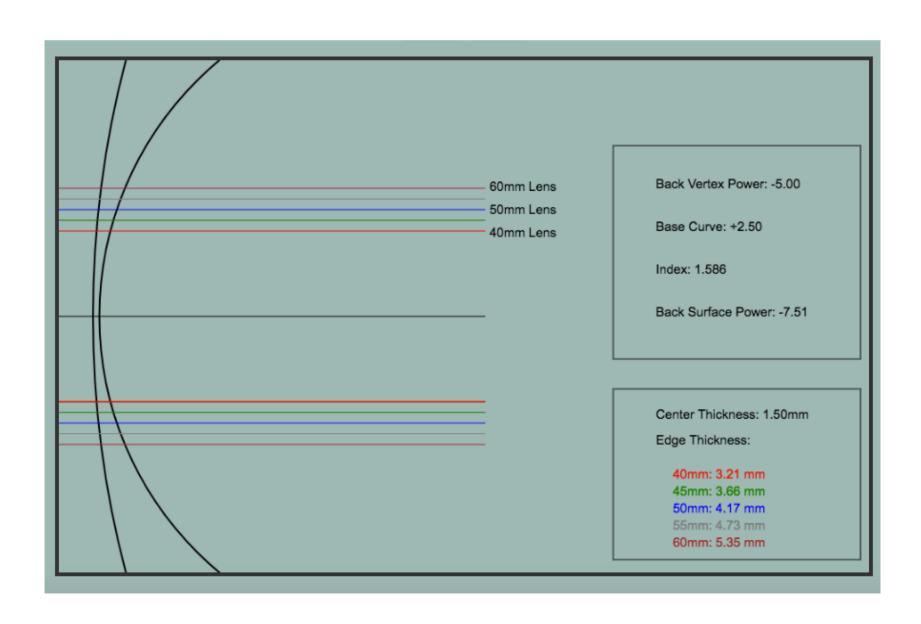
$$ET = CT - S_1 + S_2$$

Note that s_1 is + and s_2 is -

$$ET = CT - S_1 + S_2$$

Power: increase power, increase thickness

Base Curve: flatten base curve, decrease thickness


Diameter:* decrease diameter, decrease thickness

Index: increase index, decrease thickness

Decrease Minimum Thickness:* decrease thickness

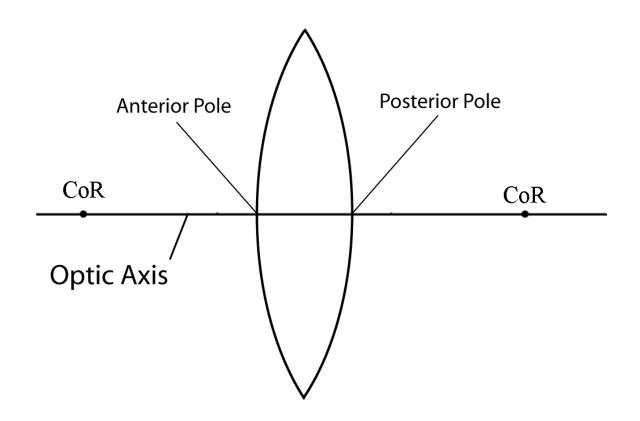
Example: use Trivex (allows 1.0mm CT on minus)

* Significant impact

Example: Rx: -5.00DS Diameter: 60mm

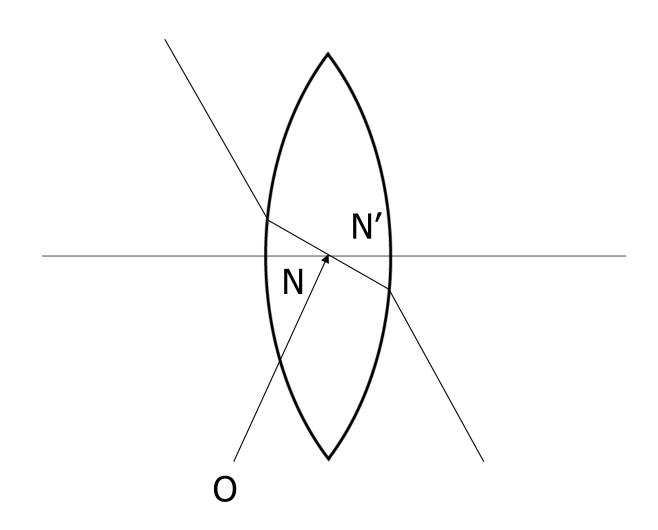
Edge Thickness

CR 39: 6.8mm


High Index (1.70): 5.42mm

Polycarbonate: 5.35mm

CR 39 and 1.70 lenses use 2.2mm CT Polycarbonate use 1.5mm CT


Major Reference Points

Optic Axis & Lens Poles

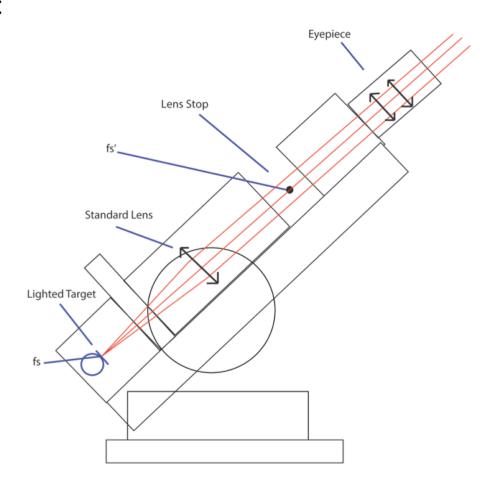
Major Reference Points

Optic Center & Nodal Points

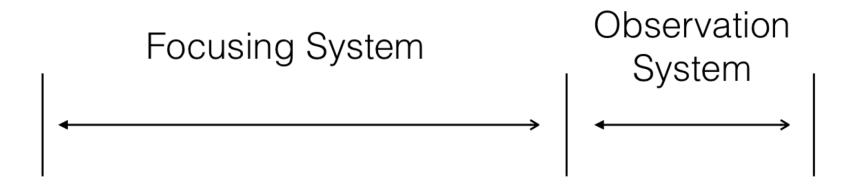
Verification of Lens Prescriptions: Lensometer

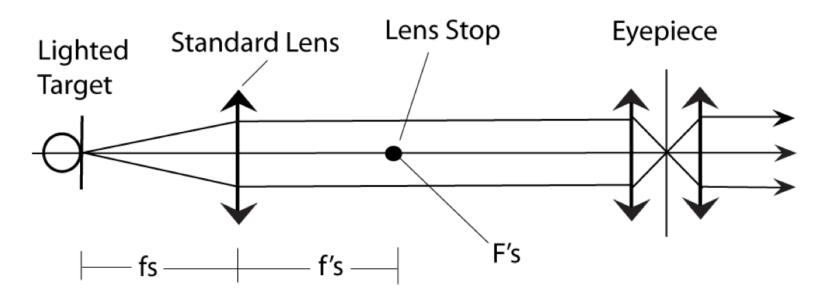
Consists of two basic elements:

Focusing System


Lighted Target

Standard Lens


Lens Stop


Observation System

Keplerian Telescope

Verification of Lens Prescriptions: Lensometer

Verification of Lens Prescriptions: Lensometer

Image is in focus 090 degrees from meridian being measured:

Sphere is in focus (left image) at +1.00D (power in 120 = +1.00) Cylinder in focus (right image) at -1.00D (power in 030 = -1.00)

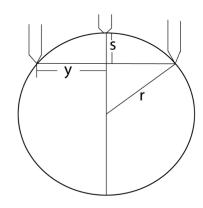
Rx: +1.00 -2.00 x 120

Verification of Lens Prescriptions: Lensometer

Amount of target movement determined by power of lens:

$$x_S = f_S^2 P_V'$$

Xs = movement of light target


 f_S^2 = focal length of standard lens

 P_{ν}' = back vertex power

Example: $x_s = +2.5$ mm for +20D standard lens and a +1.00D "unknown" lens

Verification of Lens Prescriptions: Lens Gauge

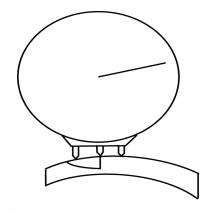
Determine surface power by measuring sagittal depth

$$P = \frac{2(n-1)s}{y^2}$$

Can determine:

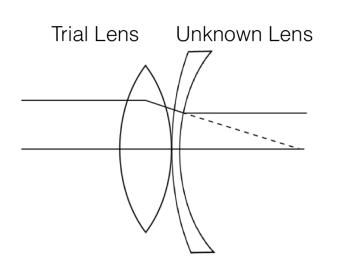
Approximate Power: P1 + P2

Cylinder Power: difference between meridians on back surface Add Power: difference in front surface powers of lens and segment Slab Off Prism: difference in reading for distance portion vs reading at slab off line (typically top of segment)


Verification of Lens Prescriptions: Lens Gauge

Measuring Slab Off Prism

Compare lens clock reading in vertical meridian for distance portion of lens to lens clock reading at slab off line


Difference in diopters is amount of prism in prism diopters

Verification of Lens Prescriptions: Hand Neutralization

Measuring Neutralizing (Front Vertex) Power

Neutralize motion seen through lens

Lens power is same magnitude but opposite sign of neutralizing lens

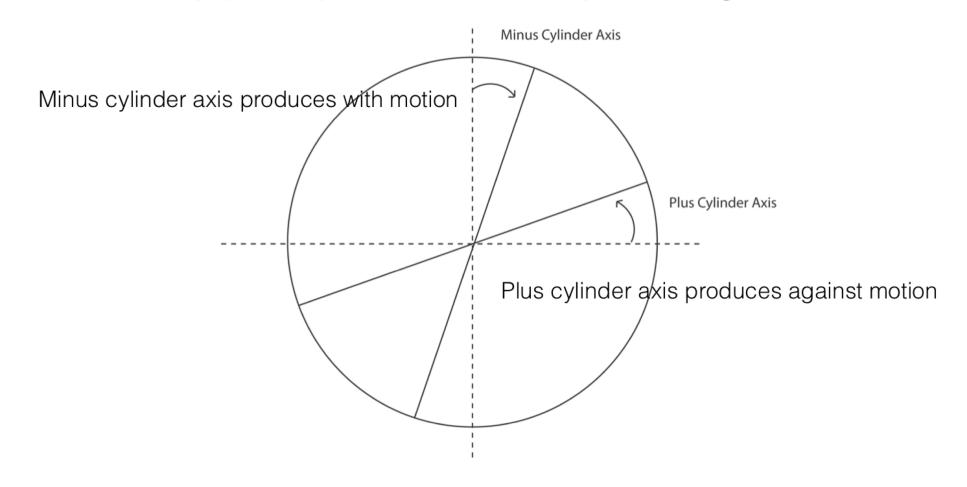
With Motion: net minus for lens combination

Against Motion: net plus for lens combination

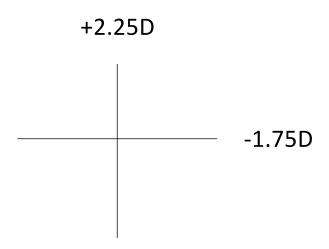
Verification of Lens Prescriptions: Hand Neutralization

Measuring Neutralizing (Front Vertex) Power

Example


What is front vertex power:

Neutralizing lenses: -2.00 @ 030 / +1.50 @120



Verification of Lens Prescriptions: Hand Neutralization

Identify principal meridians by rotating the lens

Writing & Transposing Lens Prescriptions

In minus cylinder:

Sphere: most plus power (+2.25)

Cylinder: difference between powers (-4.00)

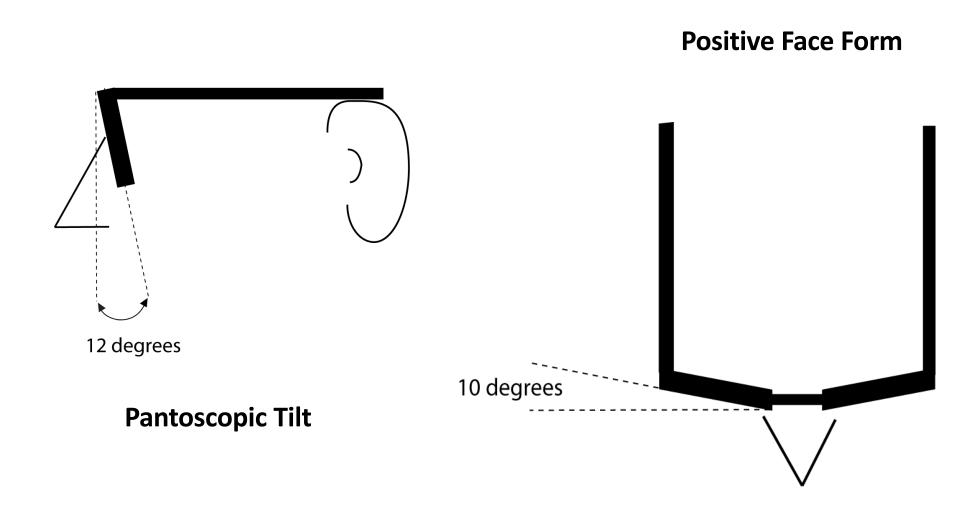
Axis: most plus meridian (090)

Rx: +2.25 -4.00 x 090

Writing & Transposing Lens Prescriptions

Cylinder Transposition in Three Steps

- 1. Add the sphere and the cylinder powers to obtain the new sphere power
- 2. Change the sign of the cylinder
- 3. Rotate the cylinder 090 degrees

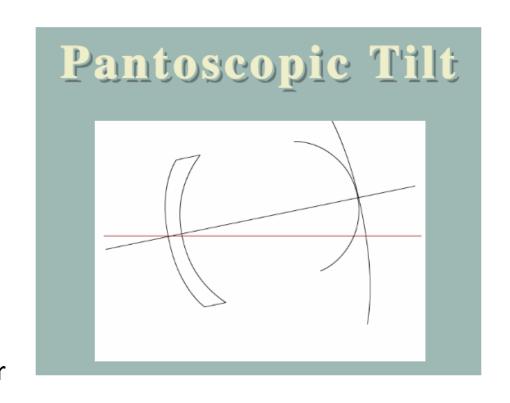

Example: Plus cylinder form: -2.50 +0.50 X 090 What is minus cylinder form?

1.
$$-2.50 + (+0.50) = -2.00$$

$$3. \quad 090 + 090 = 180$$

Result: -2.00 -0.50 X 180

Effect of Lens Tilt


Effect of Lens Tilt

Introduces Oblique Astigmatism

Sphere Power Increase (very small)

Introduction of Astigmatism

Plus Sphere creates Plus Cylinder Minus Sphere creates Minus Cylinder

Axis is same as axis of rotation

Pantoscopic (Retroscopic) Tilt: axis 180

Face Form (positive and negative): axis 090

Effect of Lens Tilt

New Sphere Power

$$S' = S_o \left[1 + \frac{\sin^2 \alpha}{2n} \right]$$

Cylinder Power

$$C' = S' \tan^2 \alpha$$

Effective Power

Two Considerations:

Need to change lens power as vertex distance changes

Accommodative demand changes for near objects as vertex distance changes

Effective Power

Due to effectivity:

Minus lens becomes more minus when vertex distance decreases Plus lens becomes less plus (more minus) when vertex distance decreases

To compensate:

Minus Powered CL: decrease Rx compared with spectacle Rx Plus Powered CL: increase Rx compared with spectacle Rx

Happens for ALL powers, clinically significant at +/- 4.00D

Effective Power

$$P_{COMP} = \frac{P}{1 - dP}$$

$$P_{CL} = \frac{P_{SPEC}}{1 - dP_{SPEC}}$$

d (vertex distance) is positive for movement toward the eye and negative for movement away from the eye

To find Spec Rx (given CL Rx:

$$P_{SPEC} = \frac{P_{CL}}{1 + dP_{CL}}$$

Effective Power

Due to effectivity:

Compared to emmetropia:

Myopes have lower demand for accommodation with spectacles

Hyperopes have a higher demand for accommodation with spectacles

All Contact Lens wearers have the **SAME** accommodative demand as emmetropes

Therefore:

Myopes accommodate more with CLs Hyperopes accommodate less with CLs

Optical Characteristics of Lenses

Spectacle Lens Processing

Lens Manufacturing

Most lenses are initially fabricated as lens blanks by a lens manufacturer

Two Types of Lens Blanks

Finished Blank

front and back surfaces are finished (ground and polished)

have final power for Rx

have to be edged to fit frame

ex: single vision sph and common sph + cyl combinations

Semi Finished Blank

front surface is finished (base curve)

back surface needs to be ground and polished

then edged to fit frame

ex: bifocals, high Rx lenses, sph + cyl (because of orientation)

Optical Characteristics of Lenses

Spectacle Lens Processing

Surfacing: grind correct curve and polish surface

Edging: cut lenses to correct shape and size and finish edge

Frame Measurements & Specifications

Physical Characteristics

Measurements/Specification

Considerations for High Prescriptions

Physical Characteristics & Biological Compatibility of Frame Materials

Plastics

Also called zylonite (zyl)

Cellulose Acetate

Cellulose Acetate

Proprionate

Blended Nylons

Polyamides

Co-polyamides

Gliamides

Metals

Monel (alloy)

May contain nickel (allergy

potential)

Plate with palladium or

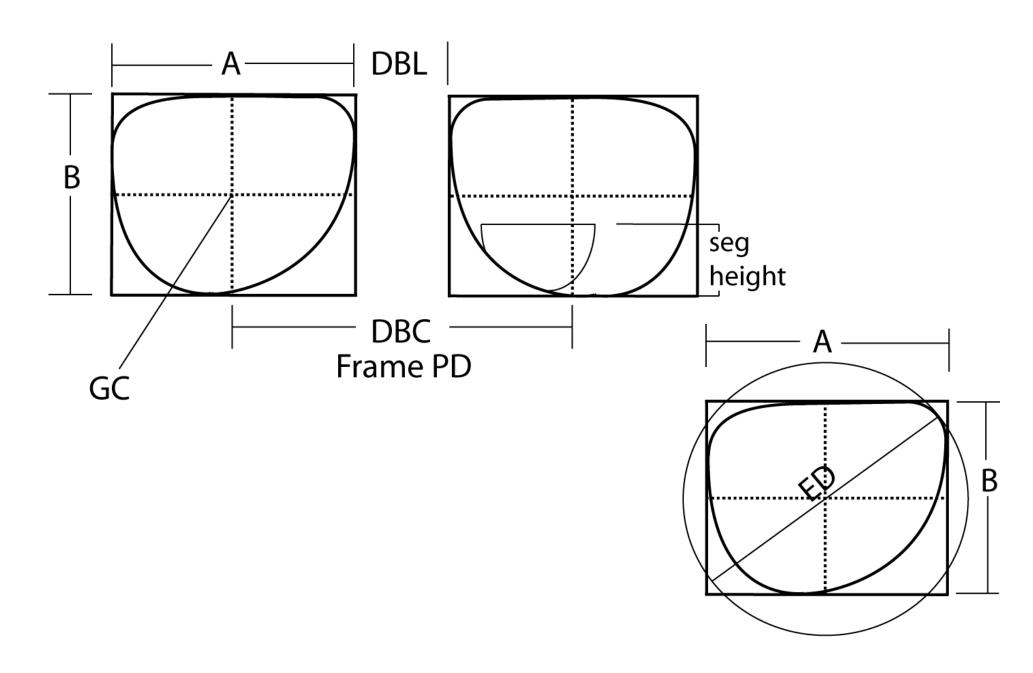
other nickel free material

Titanium

Lightweight

Durable

Corrosion resistant


Hypoallergenic

Fitting, Adjustment, Specification, and Nomenclature of Frames

End Piece

Fitting, Adjustment, Specification, and Nomenclature of Frames

Optical & Frame Considerations: High Rx Lenses

Optical Considerations

Consider the factors that determine lens thickness

Lens Diameter
Index of Refraction
Minimum Thickness
Base Curve
Lens Prescription

Problems with High Rx Lenses:

Prism in lens periphery

Minus

Edge Thickness / Multiple Ring Effect

Plus

Center Thickness Magnification

Ring Scotoma

Optical & Frame Considerations: High Rx Lenses

Frame Considerations

Choose a frame that has a Frame PD = Patient PD
This eliminates the need for decentration (assuming no prism in Rx)

Smaller Eye Sizes

Lens diameter has more effect on lens thickness than any other factor

For High Minus

Consider plastic frames

Hide the edges

Reduce / eliminate the multiple ring effect

Don't choose frames wider than patient's face

For High Plus

Frame with adjustable nose pads

Reduce vertex distance (reduces magnification)

Multifocal Spectacle Correction

Types

Segment Center Locations

Image Jump

Total Displacement

Placement of Optical Centers

Segment Height & Placement

Types

Fused

All glass multifocal segments are fused except the glass executive bifocal/trifocal

Achieve add power through a change in index of refraction Index of segment is higher than index of lens

Types

One Piece

All plastic multifocal segments are one piece Glass executive multifocal segments are one piece

Achieve add power with a change in curvature of front surface between main lens and segment

Types

Progressive Addition Lenses

PALs are a special case of one piece multifocal design

Use continuous change in curvature from distance portion of the lens to the full add portion

PALs are "aspheric" in that they are not spherical surfaces

Types

Progressive Addition Lenses

Usually have characteristics of either:

Hard Design

Larger Near Portion
Harsh Contours (more unwanted astigmatism)
Shorter Corridor

Soft Design

Small Near Portion
Softer Contours (less unwanted astigmatism)
Longer Corridor

Types

Progressive Addition Lenses

Usually have characteristics of either:

Hard Design

Better for patient who is "eye mover" Due to wider reading portion

Soft Design

Better for patient who is "head mover"

Due to less unwanted astigmatism

Types

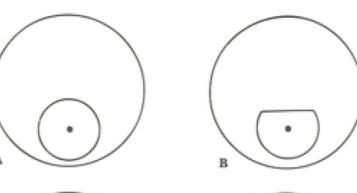
Progressive Addition Lenses

There are many specialty PAL designs

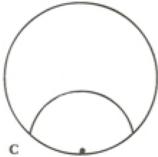
Designed for computer/intermediate use Designed for smaller B (vertical) frame dimensions

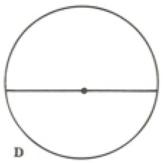
Types

Blended Bifocals


Rarely used

Unlike PAL, there is no functional advantages, only cosmetic


Include areas of unwanted astigmatism


Segment Center Locations

Seg OC ½ segment diameter below segment top

Seg OC 5mm below segment top

Seg OC at segment top

Differential Displacement (Image Jump)

Image jump is the prismatic effect at the top of the segment

Amount of image jump is found using Prentice's Rule

Image Jump = (dist to seg OC) x (add power)

Example: image jump from FT35 +2.00 Add

Image jump = (0.5)x(2.00) = 1.0 prism diopter, base down

Image jump is always base down if present

No Image Jump:

Executive Bifocal & PAL

Total Displacement (vertical)

Prismatic effect in downgaze at the reading level (RL)

Combine prism from distance Rx and prism from near Rx

Prentice's Rule (twice)

Once for distance:

Prism from distance = (dist from OC to RL)x(Dist Rx vert meridian)

Once for near:

Prism from near = (dist from seg OC to RL)x(Add Power)

Total Displacement (horizontal)

Prismatic effect in downgaze at the reading level (RL)

Combine prism from distance Rx and prism from near Rx

Prentice's Rule (once if segment inset correct)

Once for distance:

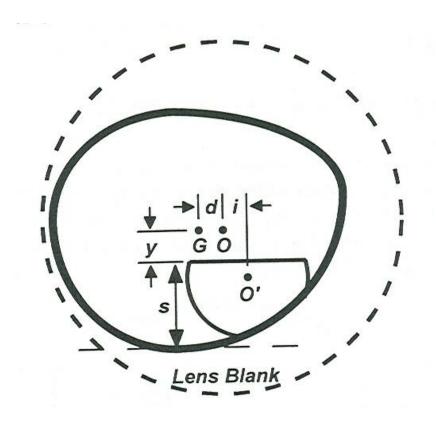
Prism from distance = (dist from OC to LOS)x(Dist Rx horiz meridian)

If segment inset is **not** correct (add):

Once for near:

Prism from near = (dist from seg OC to LOS)x(Add Power)

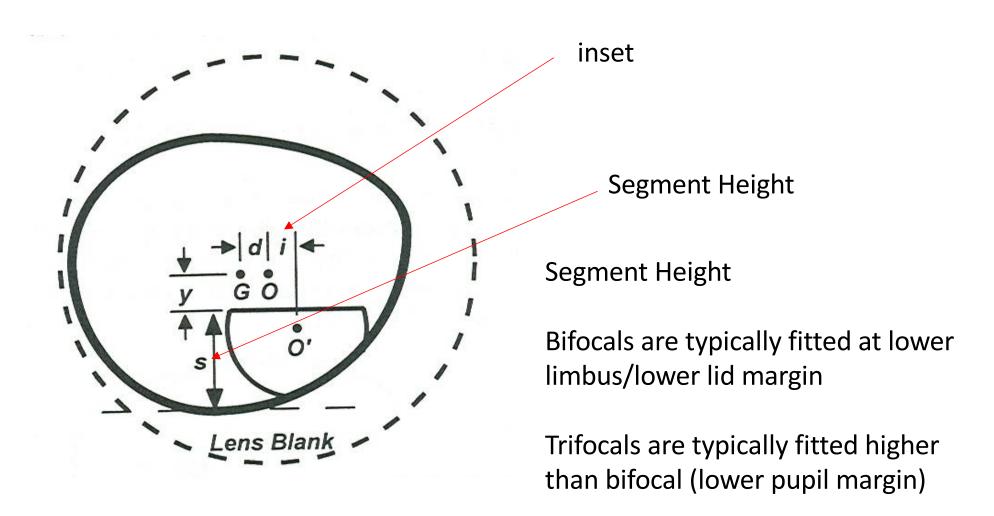
Placement of Optical Centers


Lateral Placement

Distance: Distance PD

Near: Inset: (Dist PD – Near PD)/2

Placement of Optical Centers


Vertical Placement

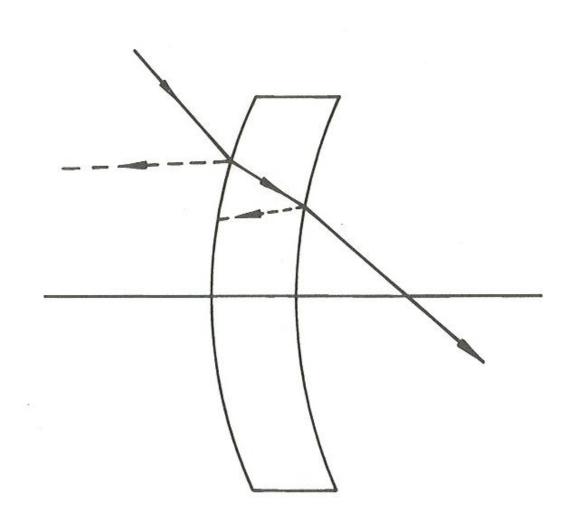
Distance: ½ B dimension

Near: determined by seg type and

height

Specifying Segment Height & Placement

Tints & Absorptive Coatings


Specification of Lens Tints & Coatings

Characteristics of Photochromic Lenses

Relationship Between Lens Thickness & Spectral Transmission

Special Occupational Requirements

Specification of Lens Tints & Coatings

Specification of Lens Tints & Coatings

Transmission of a simple lens:

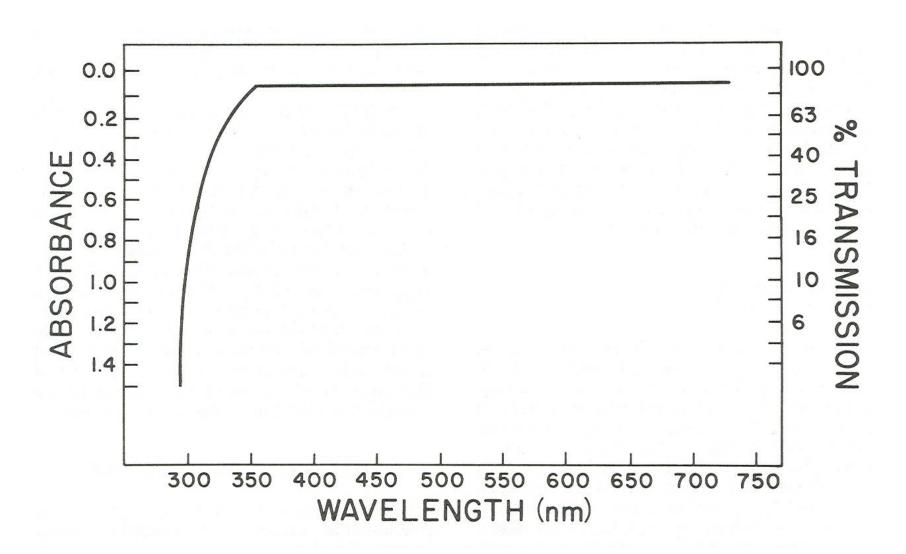
Transmission = Incident - Reflected - Absorbed

Transmission of a Lens System

The product of individual lens transmissions

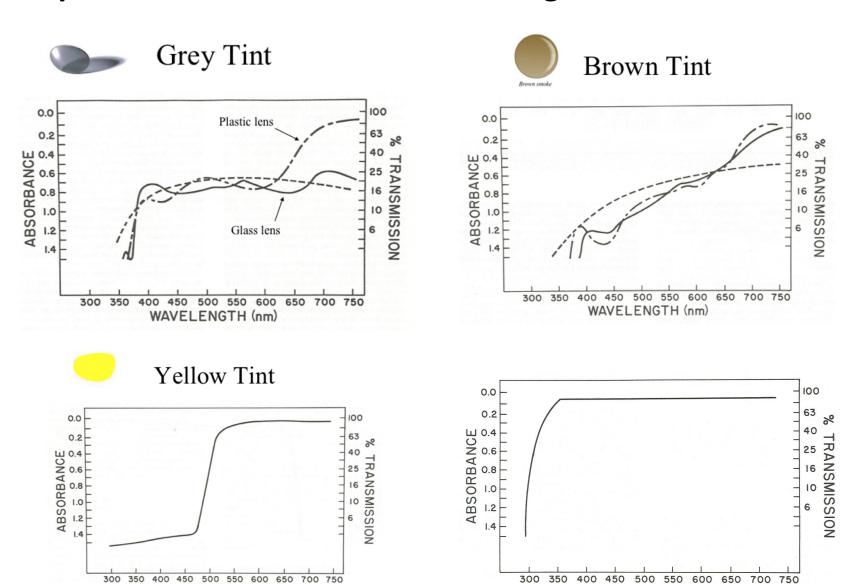
$$T = T_1 T_2 T_3 ...$$

Transmission should be specified as percent Transmission

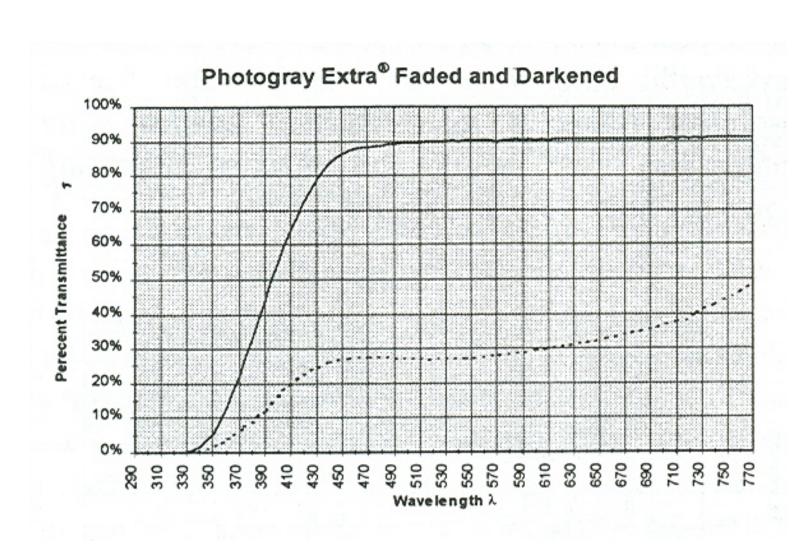

Specification of Lens Tints & Coatings

Selective Absorption

Apparent color of lens is a result of the transmission of visible light through the lens


A green lens transmits more green light than any other color

Specification of Lens Tints & Coatings


Specification of Lens Tints & Coatings

WAVELENGTH (nm)

WAVELENGTH (nm)

Characteristics of Photochromic Lenses

Characteristics of Photochromic Lenses

Transmission is affected by:

Intensity of Incident Light
Wavelength of Incident Light
Temperature
Length of Exposure

Relationship Between Lens Thickness & Spectral Transmission

Optical Density

Optical Density is a way of expressing the transmission of light through a lens or filter.

Once the density is known for a given thickness, the density of any thickness can be determined by use of proportion.

Optical Density = $-\log_{10}T$

The density for a lens consists of:

2 surface densities (based on reflection) Media density

Relationship Between Lens Thickness & Spectral Transmission Optical Density

For a lens with absorptive tint incorporated into the lens material (this is the case for most glass lenses), the transmission will vary across the lens depending on its thickness.

Minus lenses appear darker in the periphery Plus lenses appear darker in the center

For plastic lenses, tint is usually applied after manufacturing and lenses absorb the tint evenly across the lens without regard for thickness and so tints appear uniform across the lens.

Special Occupational Requirements

Typical Occupational Application of Absorptive Lenses

Welding

Use very dark (low transmission) gray lenses Concern about high UV exposure And high levels of visible radiation

IR Exposure

Glass Work
Work with molten glass
Blast Furnace
Industries with molten metal

Use Therminon tint (blue-green)