

# Chapter 1 Summary

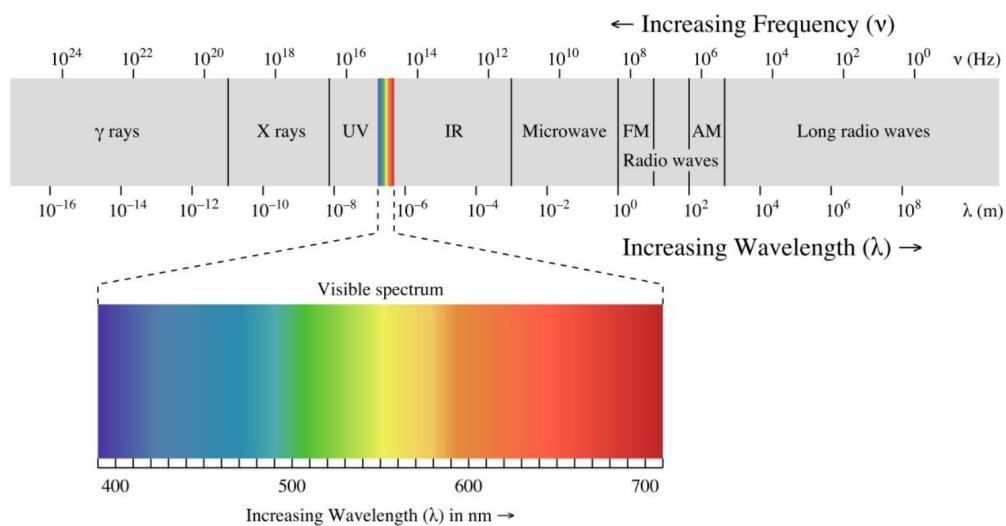
Electromagnetic Spectrum

Types of Sources

Wave Motion

Electromagnetic Waves

Longitudinal Waves


Polarization

Ultraviolet Light

Wavefronts, Waves, & Rays

Rectilinear Propagation

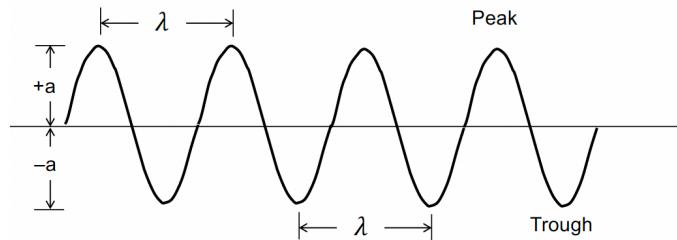
## The Electromagnetic Spectrum



(<https://leadertechinc.com/basics-electromagnetic-spectrum>)

## Visible Light Spectrum

|             |        |
|-------------|--------|
| Ultraviolet | <350nm |
| Blue        | 350nm  |
| Yellow      | 550nm  |
| Red         | 750nm  |
| Infrared    | >750nm |


## Types of Sources

- Point Source
- Extended Source
- Monochromatic Source
- Polychromatic Source

## Wave Motion / Wave Definitions

Wavelength ( $\lambda$ ) distance from peak to trough (for light, measured in nanometers (nm))

Amplitude (A) amount of displacement related to intensity



(From Dr. Loshin's course notes)

Frequency (f) number of cycles per time unit (measured in Hertz (Hz))

Period (P) reciprocal frequency

Velocity (v) speed (measured in meters per second (m/s))

Speed of Light in a Vacuum (or air) =  $3.0 \times 10^8$  m/s

## Relevant Equations

The relationship between velocity, frequency, and wavelength:  $v = f\lambda$

## Polarization of Light

Definitions:

**Unpolarized:** random vibrations normal to direction of travel

**Polarized:** (transverse waves) vibrations are limited to specific plane or planes

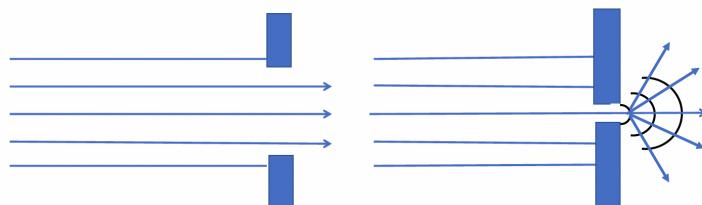
**Plane Polarized:** vibrations limited to one plane

## Ultraviolet Radiation

Source of concern as it is associated with cataracts and possibly macular degeneration.

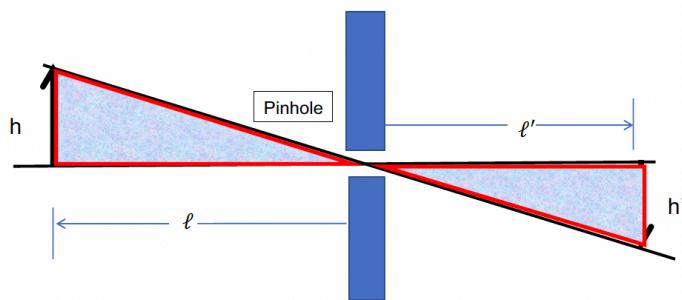
Causes sunburn and photokeratitis.

## Wavefronts


Law of Malus: rays are perpendicular to wavefronts

By convention, light travels from left to right (important in assignment of signs)

## Rectilinear Propagation of Light


Light travels in straight lines

Pinhole Diffraction: light emerging from a small aperture will change direction



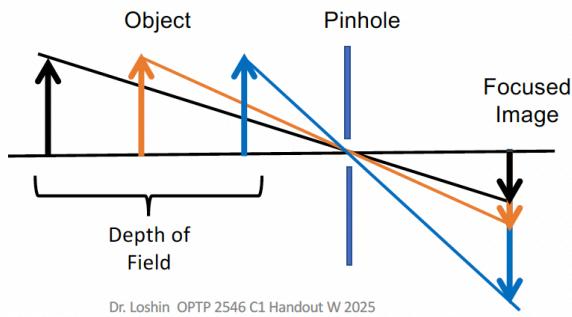
(From Dr. Loshin's course notes)

## Pinhole Camera

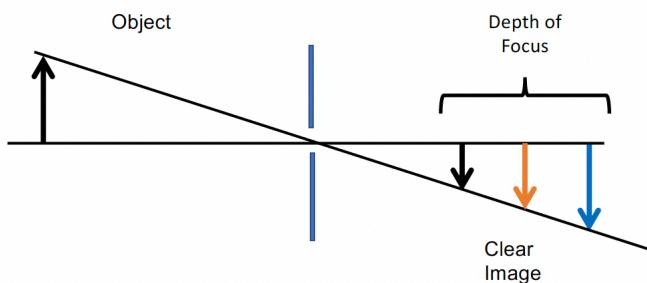


(From Dr. Loshin's course notes)

## Relevant Equations

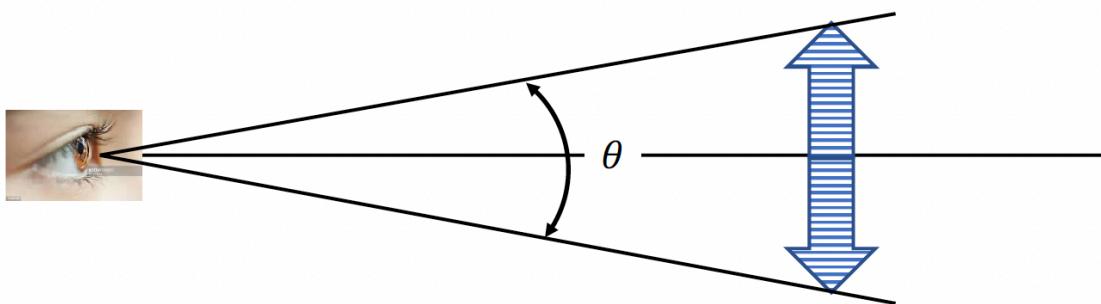

**Remember** rules of similar triangles when solving problems

|                                             |                                     |
|---------------------------------------------|-------------------------------------|
| Similar Triangles<br>Sides are Proportional | $\frac{h'}{h} = \frac{\ell'}{\ell}$ |
|---------------------------------------------|-------------------------------------|


(From Dr. Loshin's course notes)

## Depth of Field & Depth of Focus

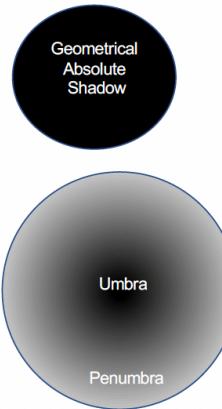
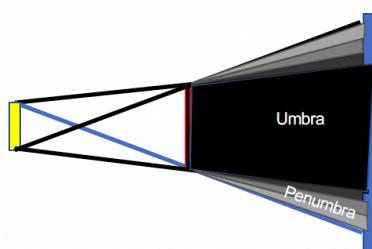
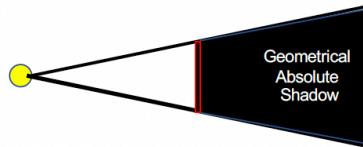
**Depth of Field:** the range over which an object can be moved and maintain a clear image




**Depth of Focus:** the range over which the image screen can be moved and maintain a clear image



(From Dr. Loshin's course notes)




**Field of View:** angular extent an object can be viewed



(From Dr. Loshin's course notes)

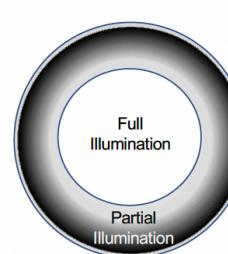
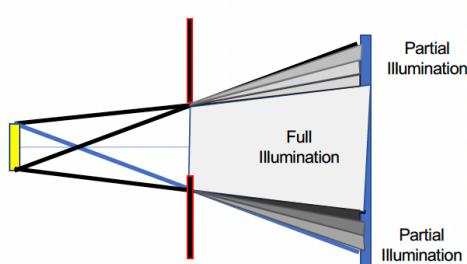
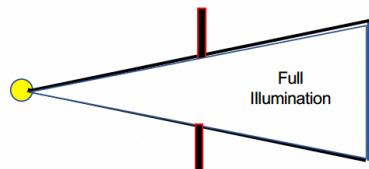
## Shadows and the Propagation of Light

### Shadows & Obstruction of Light



**Shadow** – light restricted by an opaque obstacle

#### Point source




- Geometrical or absolute shadow with clearly defined outer edges

#### Extended Source

- Umbra **inner** absolute region completely dark
- Penumbra **outer** annular varying from dark to light

Dr. Loshin OPTP 2546 C1 Handout W 2025

## Full & Partial Illumination



**Region of Illumination**  
illumination passing through an aperture and fall on a screen

#### Full Illumination

- Center uniform light region

#### Partial Illumination

- Outer annulus which varies from center light to dark

Dr. Loshin OPTP 2546 C1 Handout W 2025

## Chapter 1 Additional Problems

### Problem Types

1. Relationship between frequency, wavelength, and velocity of light
2. Pinhole camera (object and image distances and sizes)
3. Shadows and obstruction of light (point and extended sources)
4. Full and partial illumination (point and extended sources)

### The relationship between frequency, wavelength, and velocity of light

Remember:  $v = f\lambda$

The velocity of light in air (or vacuum) is  $3.0 \times 10^8$  m/s

The frequency of a wave is constant for all media

1. What is the frequency of light that has a wavelength of 750nm in air?
2. The light in the previous problem is transmitted through an optical media that has slows the velocity to  $2.0 \times 10^8$  m/s. What is the wavelength of the light in this media?

### Pinhole Camera (object and image distance and size)

Remember: use similar triangles

$$\frac{h'-h}{l'-l}$$

1. A pinhole camera is used to create an image of an object that is 20cm tall. If the object is 100cm in front of the pinhole and the image created of it is  $\frac{1}{4}$  of the object's size, what is the distance from the pinhole to the screen (film plane)?
2. A pinhole camera produces an image 2.25 inches in diameter of a circular object. When the screen is moved 3 inches farther from the pinhole, the image increases to 2.75 inches in diameter. What was the original distance from the pinhole to the screen?

### **Shadows and obstruction of light (point and extended sources)**

Remember: a point source produces a sharp uniform shadow  
An extended source produces an umbra (total shadow) and penumbra (partial shadow)

1. Find the size of the shadow created by a point source of light and a 2m diameter opaque disk if the screen is 20m from the light and the disk is 10m from the screen.
2. The point source in the previous problem is replaced with an extended source 1m in diameter. What is the width of the penumbra formed?

### **Full and partial illumination (point and extended sources)**

Remember: a point source produces a sharp region of full illumination  
An extended source produces an area of full illumination and an area of partial illumination

1. What is the diameter of the circle illuminated on a screen 15m from a point source of light if the light travels through an aperture (located 5m from the light source) that is 1m in diameter?
2. The point source in the previous problem is replaced with an extended source 50cm in diameter. What is the diameter of the area of full illumination?