

Chapter 2

Additional Problems

Problem Types

Percent of incident light reflected at a surface

Refraction at a plane surface

Critical Angle

Apparent Position

Percent of incident light reflected at a surface

1. What percentage of light incident normally on a lens surface with an index of 1.49 is reflected back into the air?

Remember

$$\%Reflected = \left(\frac{\{n' - n\}}{\{n' + n\}} \right)^2 \times 100$$

2. Which lens material will reflect the most incident light (incident normal to surface)?
 - a. CR39 ($n=1.49$)
 - b. Trivex ($n=1.53$)
 - c. Polycarbonate ($n=1.586$)

Refraction at a plane surface

1. What is the angle of refraction of a light ray with an angle incidence of 40 degrees incident on a plane surface with an index of 1.53? (ray coming from air)

Snell's Law :

$$n \sin \theta = n' \sin \theta'$$

2. After refraction at a plane surface a light ray has an angle of 20 degrees. If the angle of incidence is 30.6 degrees, what is the index of the lens material?

Critical Angle

1. What is the critical angle of crown glass ($n = 1.523$) in air?

$$\sin\theta_c = \frac{n'}{n}$$

2. The critical angle at the interface between two optical media is 35 degrees. If light travels in the second medium at a velocity of 2.75×10^8 m/s. What is the index of the first medium?

Apparent Position

1. A coin placed on the bottom of a pool that is 4m deep appears from above the surface to be 3m below the surface. What is the index of the liquid in the pool?

$$\frac{n}{l} = \frac{n'}{l'}$$

n = index of object space

n' = index of image space

l = object distance (distance from surface)

l' = image distance (apparent distance from surface)

2. A postage stamp is covered by a plate of glass that is 3cm thick. If viewed from above what is the apparent position of the stamp if the index of the glass is 1.60?